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Abstract. Transition siate theory is frequently used to describe interstitial diffusion in solids. 
A basic assumption in this thwry is that equilibrium slatistical mechanics can be used to 
characterize the different configurations in the msition stale, the rigion in configuration space 
which acts as a brhleneck for the motion of the interstitial. We have performed a detailed test of 
this assumption for hydrogen diffusion in palladium by combining the moleculin dynamics and 
the Monte Carlo techniques. The study clearly confinns that equilibrium sratislicd mechanics 
can be used 10 characterize the different transition state configurations even though the presence 
of the hydrogen atom in the transition sfare strongly influences the fluctuations in the system 
and despite the fact that the time-scales for lhe motion of the H atom and the Pd atoms differ 
considerably. 

1. Introduction 

Many dynamic processes in many-particle systems are governed by events that are infrequent 
on a microscopic time-scale. A common cause for the rare event nature of these processes is 
the presence of bottlenecks for the motion of the system in configuration space. In order for 
such a dynamic event to occur a thermal fluctuation. is required that brings the system from a 
locally stable region to a transient region, the bottleneck. The event is rare if the probability 
for the thermal fluctuation~to occur is small. Interstitial diffusion in solids belongs to this 
category and here we will consider hydrogen diffusion in metals. 

An important class of theories which deal with this kind of processes is based on 
ideas first clearly formulated by Eyring (Glasstone et al 1941) and nowadays referred 
to ai transition state theory (TST). The term ‘transition state’ is used for the bottleneck 
in configuration space. The theory was developed in applications to solids by Wert and 
Zener (1949) and by Vineyard (1957), and it has been extended to include dynamic 
corrections (Keck 1967, Bennett 1975, Doll and Voter 1987, Voter 1989) well as quantum 
effects (Pechukas 1976, Gillan 1987, Voth et al 1989). The essence of transition state theory 
is the counting of the various ways the system can pass through the transition state. For 
this equilibrium statistical mechanics is used. 

The aim with the present paper is to test some of the basic assumptions bebind transition 
state theory for hydrogen diffusion in metals. In particular, we are going to test the 
assumption that equilibrium statistical mechanics can be used to characterize the different 
configurations in the transient region, the transition state. We are going to make use of 
results from molecular dynamics (MD) simulations, where the time-scales in the problem 
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enter, and Monte Carlo (MC) calculations, which are independent of the time-scales. The 
purpose is to clearly demonstrate that the distribution of transition state configurations is 
independent of how difficult or easy that region is to enter, or of how quickly a typical 
hydrogen atom passes through it. We will restrict ourselves to classical mechanics and 
consequently only consider high temperatures. 

As our test case we have chosen hydrogen in palladium. For this system a potential 
based on the embedded atom method (EAM) (Daw and Baskes 1984, Foiles et ai 1986) 
has been developed that is found to well describe the diffusive motion of hydrogen (Li 
and Wahnstr6m 1992a, b). At the temperature 600 K the hydrogen atom moves between 
the octahedral (0) sites in the FCC lattice with a mean residence time of the order of a 
few picoseconds. This makes it feasible to perform direct numerical molecular dynamics 
simulation of the diffusion process at 600 K and above. 

The reason for making these tests for this particular system is twofold Firstly, the 
relaxation caused by the presence of the hydrogen atom in Pd is large. For instance, the 
barrier height for diffusion is reduced from 659 meV to 172 meV when relaxation is taken 
into account (cf. section 3). This implies that the presence of the hydrogen atom strongly 
influences the fluctuations in the system. Secondly, the time-scales for the motion of the 
hydrogen atom and the Pd atoms differ substantially. Hydrogen is about 100 times lighter 
compared with Pd and its mean velocity is 10 times larger. A typical hydrogen atom passes 
through the transition state fast, compared with the motion of the Pd atoms. 

2. Transition state theory 

When applying (TST) to interstitial diffusion (Flynn 1972) we have to define the locally 
stable regions in configuration space. The obvious choice for H in Pd is to associate a 
stable region with configurations where the hydrogen atom is located in the vicinity of an 
0-site. To be more precise, we can use the Wigneraeitz cells for the 0-sites, and the 
coordinate for the hydrogen atom determines which stable region the system belongs to. 

The rate k, for moving from one site to an adjacent site is in TST expressed in terms of 
the probability density for the hydrogen atom to be located at the dividing surface between 
two different sites, and the flux fS(r), in one direction, through that surface. By introducing 
the microscopic density n(r). i.e. the probability of finding the hydrogen atom at position 
P, we can write the rate as 

where, in the numerator, the integral is over the dividing surface between two adjacent sites 
and, in the denominator, it is over a WignerSeitz cell. We have also indicated that the flux 
may depend on the position coordinate T.  

For clarity, we would like to remark that the TST expression for the rate kTST is an 
approximation for the true rate and that dynamic effects have been neglected. (Keck 1967, 
Bennett 1975, Doll and Voter 1987, Voter 1989). If the basis for TST is verified it can, 
however, be combined with short-time dynamical calculations in order to obtain the exact 
diffusion coefficient at arbitrary temperatures (Voter 1989). assuming classical mechanics to 
be valid and given a potential energy function. This is a major motivation for the present 
study. For H in Pd we have found a high probability of direct backward jumps (Li and 
Wahnstrom 1992b). which will reduce the value for the diffusion coefficient compared with 
the TST value. Also quantum effects can be incorporated into TST (Gillan 1981, Voth et 
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a/ 1989). but in this case dynamic corrections cannot be obtained in the multidimensional 
case at the same level of accuracy as in the classical limit see e.g. Wahnstrom et a1 (1988). 

With these limitations in mind, in the next section we will compare results for the two 
quantities &(r) and n ( r )  determined in two quite different ways: by using the molecular 
dynamics technique, where the time-scales enter, and the Monte-Carlo method, which is 
independent of the time-scales. 

3. Results 

3.1. The potential 

The basic idea behind the (EAM) is that each atom in a metal is viewed as being 
embedded in the host consisting of all remaining atoms (Norskov and Lang 1980, Stott 
and Zaremba 1980). Its embedded energy is related through a function to the local electron 
density contributed by the surrounding atoms. The cohesive energy for the metal can then be 
expressed in terms of the embedded energies for the individual atoms plus a pair interaction 
term which accounts for the electrostatic ion-ion interactions, 

where pi is the local electron density at atomic site i, F&) is the embedded energy for 
atom i when immersed into a medium with electron density p. and @ i j ( R i j )  is the two-body 
interaction energy between aiom i and j separated by the distance Rij .  A set of atomic 
coordinates is denoted by [R}. In the EAM scheme, the functions F and @ are mostly 
determined phenomenologically by choosing suitably parametrized functions and fitting the 
parameters to some available experimental data. In this sense it is semi-empirical in nature. 
We have chosen exactly the same parameterization as in (Li and Wahnstrom 1992b). 

We use 1 H atom and 256 Pd atoms in the MC calculations and 8 H atoms and the same 
number of Pd atoms in the MD simulations, together with periodic boundary conditions. The 
larger hydrogen concentration in the M ~ J  calculations is used to enhance the statistics. We 
have found that value to be sufficiently low to accurately represent the low concentration 
limit (Li and Wahnstrom 1992b). In all cases the temperature is T = 800 K and the lattice 
spacing a0 = 3.957 A, which taties the thermal expansion into account in a proper way (Li 
and Wahnstriim 1992b). 

In figure I we show the energy obtained when moving the hydrogen atom along the 
[I 111-direction. This direction corresponds to the minimum energy path when hydrogen is 
moving in between different octahedral sites. Both the unrelaxed energy, obtained with all 
Pd atoms fixed at their lattice positions, and the relaxed energy, where for each position 
of the hydrogen atom the energy is minimized with respect to the positions of the Pd 
atoms, are shown. The points labelled by 0, S, and T in the figure denote the energies 
when the hydrogen atom is located at the octahedral site, the saddle point along the [111]- 
direction, and the tetrahedral site, respectively. In the unrelaxed lattice a Pd atom is located 
at the distance &a0/2 = 3.427 A from the 0-site, which explains the rapid increase of 
the potential energy for large distances. It is clearly seen that the relaxed energy differs 
considerably from the unrelaxed one. At the 0-site the energy difference is 48 meV, the so 
called self-trapping energy (Flynn and Stoneham 1970). At the saddle point it is much larger, 
487 meV, clearly indicating the large distortions that are involved in hydrogen diffusion. 
The barrier height is reduced from 659 meV to 172 meV when relaxation is included. 
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The banier is higher in other directions. In the [llO]-direction it is 292 meV when 
relaxation is included. Since in diffusion all different paths contribute, one should take a 
weighted average over all different paths to achieve a proper evaluation of the diffusion 
coefficient. At high temperatures, where the diffusion is sufficiently large, direct molecular 
dynamics can be performed. In a previous study (Li and WahnstrLim 1992b), using 
exactly the same potential as here, the diffusion coefficient was evaluated at three different 
temperatures: 626 K, 791 K and 990 K. The corresponding activation energy determined 
from an Arrhenius-plot was found to be 245 meV, close to the experimental value 230 
meV (Volkl and Alefeld 1978). For the two isotopes deuterium and tritium the activation 
energy is experimentally found to be smaller, 206 meV (Volkl el al 1971) and 185 meV 
(Sicking et al 1983), respectively. Assuming TST to be valid the activation energy should 
be independent of the mass m of the diffusing particle. The diffusion coefficient is simply 
proportional to m-Il2. We believe that the most likely reason for these differences are 
quantum effects but more work is required to estimate the size of these and those caused 
by dynamic corrections. 

3.2. The mean force 

At a finite temperature the positions of the Pd atoms are fluctuating and that effect is included 
in the potential of mean force (Chandler 1987). If we assume a canonical ensemble, the 
mean force acting on a hydrogen atom fixed at position T is defined by 

F(T) = (-VHE(IR))),. (3) 

The notation (. . .)v is used for a canonical ensemble average with the hydrogen atom fixed 
at position P, 

and OH = a/a&. The notation RH is used for the coordinate of the hydrogen atom and the 
ordinary canonical ensemble average will be denoted by (. . .). The corresponding potential 
is defined by 

W(P) - W(P,) = - F(T‘) . dT’. (5 )  l 
Physically, W ( T )  is the potential the hydrogen atom would experience if it was moving 
infinitely slowly. The potential of mean force only depends on the potential energy surface 
E = E((R)) and the temperature, but not on the masses or the time-scales that enter into 
the problem. 

We have determined F(P) along the [Ill]-direction using the Monte Carlo method, 
together with the Metropolis algorithm (Allen and Tildesley 1987). This is the most direct 
way to solve the multi-dimensional integral in equation (3). For each position of the 
hydrogen atom we have generated of the order 350 statistically independent configurations 
and the average force is then determined. In figure 2 we show tbe result and the error bars 
correspond to the estimate of two standard deviations. In the same figure we also show the 
forces obtained by differentiating the unrelaxed and relaxed potentials, shown in figure 1. 
The mean force is close to the force corresponding to the relaxed potential and the thermal 
fluctuations are seen to be most important where the barrier is steepest. 
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Figure 1. The total potentid energy as a function of 
the H position along the 111 I ]  direction. n o  cases are 
shown: unrelaxed (all Pd atoms fixed ar their lanice 
positions), and relaxed (for each position of the H 
atom the energy is minimized with respect to the Pd 
positions). System: 1 H and 256 Pd. Lanice spacing: 

F i r e  2. The force on the H atom as a function 
of ifs position along the [ I l l ]  d t h i o n .  Three cases 
are shown: the force obtained from the unrelaxed and 
relaxed potentials (shown in figure I), and the mean 
force (defined in equation (3)) at T = 800 K. T h e m  
ban represent 95% confidence intervals. 

3.957 A. 

3.3. The microscopic density 

One of the key quantities in TST is the microscopic density n(r). We c@ determine n ( T )  
in two different ways. Assuming a canonical ensemble we have 

which is directly related to the potential of mean force W(r) ,  defined in equations (3) and 
(5). through 

The density in equation (6) is clearly independent of the time-scales, e.g. how long the 
hydrogen atom spends in the vicinity of the transition state. This follows rigorously from 
the use of the canonical ensemble, i.e. the assumption that the system as a whole is in a 
state of thermal equilibrium. 

We can also determine the probability for the hydrogen atom to be located at the 
transition state in a different way, by using the MD technique. The equations of motion 
for all atoms are solved simultaneously and a timedependent trajectory for the hydrogen 
atom RH(?) is obtained. The microscopic density is achieved by making a time-average 
along the trajectory, 

(8) 

where in practice r has to be finite. Provided the system is ergodic the ensemble 
average in equation (6)  and the time average in equation (8) should give identical results 
(Chandler 1987). A priori we cannot be sure, however, that the two different averaging 
procedures give the same result. We share the opinion in (Ma 1985) that the time average 
is more closely related to reality compared with the ensemble average. If they coincide, it 
then shows that one can use the ensemble method to generate configurations that correctly 
characterize the behaviour in the transient region. 

n(r) = r-m lim F r i r d t S ( T  - RH@)) 
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In the calculation of the time average the proper timescales for the motion of the light 
hydrogen atom and the heavy Pd atoms are included. A contribution to n(r) is obtained 
whenever the hydrogen atom is located in the vicinity of T. That implies that the density at 
e.g. the saddle point is obtained from configurations where the hydrogen atom passes a small 
region around the saddle point in a time which is shorter than the typical lattice vibrational 
period. On the other hand, the different time-scales do not enter into the evaluation of n ( ~ )  
using the ensemble average in equation (6). In that calculation the hydrogen atom is placed 
at the position r and after that the surrounding has relaxed and equilibrated in the presence 
of an immobile hydrogen atom, the average force is determined and from that the density 
is obtained. 

2.1 , 1 

2.0 

0.5 Figure 3. Comparison of the microscopic density for the H 
atom along the [Ill]-dmion, determined using the (MO) 

and (MC) techniques ai 800 K. m e  area under the c w e  '., is normalized 10 unity and the e m  ban represent 95% 
x .x.-* I Y *. *X%% 

2.0 
Di~lrnccIiomIhcOrilc~lang~hE[IiII direrton(A) confidence interfals. 

0.0 
0.0 0.1 1.0 

In figure 3 we show the result from the calculations. The ensemble average in 
equation (6) is obtained directly from the previously calculated values of the mean 
force F(T),  and is shown as crosses. We have then determined the potential of mean 
force W ( r )  by fitting the data points for F(T) to a spline and integrated. The area under 
the curve is normalized to unity. 

To determine the time average we have done 20 separate MD simulations, starting from 
different initial configurations. The velocity version of the Verlet algorithm (Allen and 
Tildesley 1987) is used for solving Newton's equation of motion. The timestep is 0.5 fs 
which produces very numerically stable trajectories. In recent years many suggestions for 
algorithms for constant temperature simulations have been proposed (Allen and Tildesley 
1987). but in the present study we do not want to add any extra terms into Newton's equation 
of motion. To be more precise the corresponding ensemble is then the microcanonical, 
not canonical, but for sufficiently large systems average quantities are independent of the 
particular choice of ensemble (Chandler 1987). All coordinates are determined with respect 
to the centre of mass of all Pd atoms and the result is therefore unaffected by an overall 
translation. We have found this way to define the reaction coordinate (Bennett 1975) most 
convenient, in particular in a MD simulation. The system is equilibrated for 20 ps and the 
extension of each production run is 20 ps. The average temperature in the 20 simulations 
is 800 f 1 K. In determining the microscopic density along the [ I  11 ]-direction we have 
introduced small cubic volumes AV. Each time a hydrogen atom is located in one of these 
volumes a contribution to the density is obtained. We make use of the symmetry in the 
system and all different [ I  Ill-directions are taken into account. The density at position T 
is approximated by the average 
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If the volume AV chosen is too small the statistical fluctuations become too large. On the 
other hand, a too large AV makes the above approximation inaccurate. We have found 
0.2 8, to be an appropriate linear size for the cubic volume, around which the fluctuations 
in n A v ( r )  are relatively small and the result for the density is not sensitive to the size. 

In figure 3 we show the result from the MD simulation. Again, we have normalized 
the density in such a way that the area under the curve is unity. We see that the results 
obtained from MD and MC for the density agree with each other within the error bars with 
a small deviation around the teaahedral position. 

We have also estimated the error due to the finite value of AV. We write the true 
density n(r )  as 

n ( r )  = Aexp(-PQ(r)) 

which implies that it is related to the average density nA.Y(r), defined in equation (9). 
through 

n(?') = CAV(r)nAV(r)  (11) 
where the correction is given by 

We have determined CA" by approximating @(r) with the relaxed energy at T = 0 K. We 
find that the density should be increased by 3% (CAV = 1.03) at the 0-site and about 8% 
at the S- and T-sites. The increase at the S-site is because the curvature of the potential 
in the directions perpendicular to the [ 11 11-direction is positive and large. By taking this 
correction into account the agreement around the tetrahedral site would become slightly 
better. 

3.4. The pair-distribution function 

We can make the fact that the time-scales for the motion of the different atoms are irrelevant 
more explicit. By using the MD technique we can record the positions of all Pd atoms each 
time the hydrogen atom passes close to e.g. the saddle point along the [llll-direction. After 
sufficiently many such events the distribution of the surrounding Pd atoms can be obtained. 
We introduce the notation g ( r )  for the probability of finding a Pd atom at the distance r 
from the hydrogen atom when the latter is located at the saddle point 

We can also determine the same function for a hydrogen atom moving infinitely slowly. 
In that case, we put the hydrogen atom at the saddle point & = rS, let the surrounding Pd- 
atoms relax and equilibrate at the chosen temperature, and then we determine the pair 
distribution function g(r)  by making a time average where the Pd atoms are moving 
according to Newton's equation of motion but with the hydrogen atom kept fixed at rS. 

In figure 4 we show the results for g(r) ,  determined in these two different ways. The 
results coincide, which clearly show that the time-scale for the motion of the hydrogen 
atom is irrelevant. The configurations of the surrounding Pd atoms, when the hydrogen 
atom passes close to the saddle point, are independent of the velocity of the hydrogen atom. 

For comparison we have also determined g(r) using the MC technique. The hydrogen 
atom is kept fixed at the saddle point and then we sample the different Pd configurations 
using their proper weight. After sufficiently many Pd configurations g(r) can be determined. 
The result is shown in figure 4 and it coincides with the two previous calculations. 

We have also determined the distribution in the absence of the hydrogen atom, g&). 
The result is shown in the same figure as a chain curve. The first peak in g&) is focated 
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at r = 1.62 A, which agrees with the distance between the saddle point and the nearest 
Pd atom in a rigid lattice, a o / d  = 1.62 A. The broadening of the peak is due to the 
thermal fluctuations. In g(r) the location of the peak is shifted to the value 1.81 A due to 
the presence of the H atom and again, the broadening is caused by thermal fluctuations. We 
notice that in this case the peak is more narrow and asymmetric. 

0.25 , 30 I I 

O.OS 0.00 i 
0.5 

Figure 4. The pair disIAbution function &). which 
shows the location of the Pd atoms. The distance r is 
measured from the saddle poini The MD data are shown 
as lines. The Pd positions are recorded (a) only when 
the H atom passes close to the saddle point (full curve). 
(b) continuously but with one H atom k e d  at the saddle 
point (broken curve). and (c) continuously but with no 
H atom fixed (chain curve). The MC data are shown as 
circles where (a) a H atom is fixed at the saddle p i n t  
(open cirles). and (b) there is no H atom present (filled 
circles). All curves are determined at 800 K. 

Figure S. Comparison of the MD data for the velocily 
distribution of the H a" at the saddle point with the 
Maxwell dislribution. The MD data are determined at 
800 K and the broken curve (890 K) corresponds to 
the best fit to the data The error ban represent 95% 
wntidence intervals. 

3.5. Theflw: 

The other key quantity in TST is the flux fS(?). Assuming a canonical ensemble it can be 
determined directly from the Maxwell distribution according to 

where the factor 4 takes into account the fact that only atoms that exit (or equally well enter) 
the site should be counted, and where vs denotes the velocity in the direction perpendicular 
to the dividing surface. We notice that the flux does not depend on the location of the 
hydrogen atom which follows rigorously from the use of the canonical ensemble, i.e. the 
assumption that the system as a whole is in a state of thermal equilibrium. We can compare 
the result in equation (13) with the flux obtained from the MD simulation. In particular, we 
are interested in the velocity distribution for the hydrogen atom when it passes close to a 
saddle point and compare that to the Maxwell distribution. 

In figure 5 we show the velocity distribution as a function of U for hydrogen atoms that 
are close to a saddle point, within a cube of linear size 0.2 A. The result is based on 12 
independent runs, each 20 ps long and the error bars represent two standard deviations. In the 
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m e  figure we also show the Maxwell distribution, 4 ~ ( m / 2 r r k ~ T ) ~ / ~ u ~  exp(-mu2/2k,T), 
with the proper temperature T = 800 K. 

We notice that the result from the MD simulation shows a systematic shift towards higher 
temperawes. The best fit to the MD data is shown as a broken curve and it corresponds to 
the temperature T = 890 K. We have also tested the distribution independent of the location 
of the hydrogen atom. We find a Maxwell distribution with the temperature T = 825 K. 

It is very difficult to judge if the deviation shown in figure 5 is a real effect or only 
due to insufficient sampling of the rare configurations when the hydrogen atom is close 
to the saddle point. More extensive investigations are necessary in order to clarify this 
point. An indication of insufficient sampling is that the average temperature for hydrogen 
(825 K) is slightly too high. At the present stage we conclude that the velocity distribution 
for hydrogen atoms close to the saddle point is Maxwellian distributed but with a higher 
temperature (890 K) compared to the temperature for the total system (800 f 1 K). 

~ 

4. Discussion 

In the present paper we have tested some basic assumptions used in the transition state theory 
for hydrogen diffusion in palladium. The reason for making these tests for this particular 
system is that the presence of the hydrogen atom strongly influences the fluctuations in the 
system and that the time-scales for the motion of the hydrogen atom and the Pd atoms differ 
a lot. 

All tesIs are performed at the temperature 800 K for which sufficiently many events in 
the MD simulation can be recorded in regions with low probability. Both configurational 
properties, like the microscopic density n(r) (cf. figure 3) and the pair distribution 
function g(r) (cf. figure 4). as well as the velocity distribution for the hydrogen atom 
(cf. figure 5) are determined. 

The results obtained clearly show that the distribution of transition state configurations 
does not depend on how easy or difficult the region is to enter, or on how quickly a typical 
hydrogen atom passes through. The statement, that the hydrogen atom in making a diffusive 
jump approaches the saddle point so quickly that the neighbouring Pd atoms do not have 
time to relax outward fully, is not correct. Bennett (1977) emphasizes very clearly that one 
cannot regard the outward relaxation of the Pd atoms as solely caused by the approaching 
hydrogen atom, when it may equally well be that the approach of the hydrogen a” is 
a result of an outward relaxation of the surrounding Pd atoms. The jump event should 
be treated as a fluctuation in a many-body system at thermal equilibrium: the presence 
of the hydrogen atom at the saddle point neither causes, nor results from, but rather is 
instantaneously correlated with, a relaxation of the mean positions of all surrounding Pd 
atoms (Bennett 1977). We also show that the velocity distribution for the hydrogen atom 
when it passes close to a saddle point is Maxwell distributed but with a slightly higher 
temperature (890 K) compared to the temperature for the total system (800 zk 1 K). More 
extensive investigations are however necessary in order to clarify if this departure is a real 
effect or only caused by insufficient sampling of relevant configurations. 

In conclusion, the assumption that equilibrium statistical mechanics can be used to 
characterize the different transition state configurations is strongly supported by the present 
study. 
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